[image:]

Data Engineering Guide

Data Classification and Masking Guide

Version: 1.0
Date: January 2026
Author: Mastech Digital - Data Engineering Practice

Document Information
	Field
	Value

	Version
	1.0

	Last Updated
	2025-01-29

	Classification
	Internal Use

	Owner
	Data Platform Team

1. Executive Summary
Data classification and masking are foundational practices for protecting sensitive information while enabling data-driven decision making. Classification identifies what data requires protection; masking implements that protection by transforming sensitive values based on user context.
Why Classification Matters
Without systematic classification, organizations face significant risks:
Compliance Violations: Regulations require knowing where sensitive data resides
Data Breaches: Unidentified sensitive data may not receive proper protection
Operational Inefficiency: Over-protecting non-sensitive data hampers productivity
Audit Failures: Inability to demonstrate data governance controls
The Classification-Masking Lifecycle
┌───┐
│ DATA PROTECTION LIFECYCLE │
├───┤
│ │
│ ┌───────────┐ ┌───────────┐ ┌───────────┐ ┌───────────┐ │
│ │ DISCOVER │ ──▶│ CLASSIFY │ ──▶│ PROTECT │ ──▶│ MONITOR │ │
│ └───────────┘ └───────────┘ └───────────┘ └───────────┘ │
│ │ │ │ │ │
│ ▼ ▼ ▼ ▼ │
│ Scan data Assign labels Apply masking Track access │
│ assets for based on and access and compliance │
│ sensitive content and controls over time │
│ patterns context │
│ │
└───┘
2. Data Classification Framework
A robust classification framework provides consistent categorization across the organization.
2.1 Classification Levels
Define classification levels that align with your regulatory and business requirements:
	Level
	Description
	Examples
	Handling Requirements

	Public
	No restrictions
	Marketing materials, product catalogs
	None

	Internal
	Business confidential
	Sales figures, internal processes
	Authentication required

	Confidential
	Sensitive business data
	Financial forecasts, strategic plans
	Need-to-know access

	Restricted
	Highly sensitive
	PII, PHI, payment data
	Encryption, masking, audit

	Secret
	Most sensitive
	Trade secrets, M&A data
	Maximum protection

2.2 Data Categories
Beyond sensitivity levels, categorize data by type:
	Category
	Description
	Regulatory Context

	PII
	Personally Identifiable Information
	GDPR, CCPA, LGPD

	PHI
	Protected Health Information
	HIPAA

	PCI
	Payment Card Industry data
	PCI-DSS

	Financial
	Financial records and reports
	SOX, GLBA

	Employee
	HR and employment data
	Employment laws

	Proprietary
	Trade secrets, IP
	Trade secret laws

2.3 Classification Hierarchy
┌───┐
│ CLASSIFICATION HIERARCHY │
├───┤
│ │
│ SENSITIVITY DATA CATEGORY │
│ ┌─────────────┐ ┌──────────────────────────────────┐ │
│ │ SECRET │ ◀─────────────────│ Trade Secrets, M&A │ │
│ ├─────────────┤ ├──────────────────────────────────┤ │
│ │ RESTRICTED │ ◀─────────────────│ SSN, Credit Card, Medical Records │ │
│ │ │ ◀─────────────────│ Passwords, API Keys │ │
│ ├─────────────┤ ├──────────────────────────────────┤ │
│ │CONFIDENTIAL │ ◀─────────────────│ Email, Phone, Address │ │
│ │ │ ◀─────────────────│ Salary, Performance Reviews │ │
│ ├─────────────┤ ├──────────────────────────────────┤ │
│ │ INTERNAL │ ◀─────────────────│ Customer ID, Order History │ │
│ │ │ ◀─────────────────│ Internal Metrics │ │
│ ├─────────────┤ ├──────────────────────────────────┤ │
│ │ PUBLIC │ ◀─────────────────│ Published Content, Public APIs │ │
│ └─────────────┘ └──────────────────────────────────┘ │
│ │
└───┘
3. Implementing Classification
3.1 Using Tags for Classification
Unity Catalog tags provide metadata attachment for classification.
Create Classification Tags:
-- Create tag for sensitivity level
ALTER TABLE production.customers.contact_info
SET TAGS ('sensitivity' = 'restricted', 'data_category' = 'PII');

-- Create tag for regulatory context
ALTER TABLE production.hr.employee_records
SET TAGS (
 'sensitivity' = 'restricted',
 'data_category' = 'employee_pii',
 'regulations' = 'GDPR,employment_law'
);

-- Tag at column level for granular classification
ALTER TABLE production.customers.orders
ALTER COLUMN credit_card_number
SET TAGS ('sensitivity' = 'restricted', 'data_category' = 'PCI');

ALTER TABLE production.customers.orders
ALTER COLUMN email
SET TAGS ('sensitivity' = 'confidential', 'data_category' = 'PII');
Query Classified Data:
-- Find all restricted tables
SELECT
 table_catalog,
 table_schema,
 table_name,
 tag_name,
 tag_value
FROM system.information_schema.table_tags
WHERE tag_name = 'sensitivity'
 AND tag_value = 'restricted';

-- Find all PII columns
SELECT
 table_catalog,
 table_schema,
 table_name,
 column_name,
 tag_value as pii_type
FROM system.information_schema.column_tags
WHERE tag_name = 'data_category'
 AND tag_value LIKE '%PII%';
3.2 Table Properties for Classification
For additional classification metadata, use table properties:
-- Set classification properties
ALTER TABLE production.finance.transactions
SET TBLPROPERTIES (
 'classification.level' = 'restricted',
 'classification.categories' = 'PCI,financial',
 'classification.owner' = 'security-team',
 'classification.review_date' = '2025-01-29',
 'classification.next_review' = '2025-04-29'
);

-- Query classification properties
SELECT
 table_name,
 property_value as classification_level
FROM system.information_schema.table_properties
WHERE property_name = 'classification.level'
ORDER BY table_name;
3.3 Automated Classification Discovery
Implement automated scanning to discover sensitive data:
import re
from pyspark.sql.functions import col

Define sensitive data patterns
SENSITIVE_PATTERNS = {
 'ssn': r'\b\d{3}-\d{2}-\d{4}\b',
 'email': r'\b[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\.[A-Z|a-z]{2,}\b',
 'credit_card': r'\b(?:\d{4}[-\s]?){3}\d{4}\b',
 'phone': r'\b(?:\+1[-.\s]?)?\(?\d{3}\)?[-.\s]?\d{3}[-.\s]?\d{4}\b',
 'ip_address': r'\b(?:\d{1,3}\.){3}\d{1,3}\b'
}

def scan_table_for_sensitive_data(spark, table_name, sample_size=1000):
 """Scan table for sensitive data patterns"""
 df = spark.table(table_name).limit(sample_size)
 findings = []

 for column in df.columns:
 # Get sample values
 sample_values = df.select(col(column).cast("string")).collect()
 sample_text = " ".join([str(row[0]) for row in sample_values if row[0]])

 # Check each pattern
 for pattern_name, pattern in SENSITIVE_PATTERNS.items():
 if re.search(pattern, sample_text):
 findings.append({
 'table': table_name,
 'column': column,
 'pattern_detected': pattern_name,
 'recommended_classification': 'restricted'
 })

 return findings

Scan tables and generate report
tables_to_scan = spark.sql("""
 SELECT CONCAT(table_catalog, '.', table_schema, '.', table_name) as full_name
 FROM system.information_schema.tables
 WHERE table_catalog = 'production'
""").collect()

all_findings = []
for table in tables_to_scan:
 findings = scan_table_for_sensitive_data(spark, table.full_name)
 all_findings.extend(findings)

Output findings for review
for finding in all_findings:
 print(f"ALERT: {finding['table']}.{finding['column']} "
 f"contains {finding['pattern_detected']}")
4. Data Masking Strategies
Data masking transforms sensitive values to protect them while preserving usability.
4.1 Masking Techniques
	Technique
	Description
	Use Case
	Reversibility

	Redaction
	Replace with fixed value
	Display, logs
	No

	Partial Masking
	Show portion of value
	Customer service
	No

	Tokenization
	Replace with token
	Payment systems
	Yes (with key)

	Encryption
	Encrypt value
	Storage, transit
	Yes (with key)

	Hashing
	One-way hash
	Matching, dedup
	No

	Generalization
	Reduce precision
	Analytics
	No

	Shuffling
	Randomize within column
	Testing
	No

4.2 Implementing Dynamic Masking
Dynamic masking in Unity Catalog applies masks at query time based on user context.
Email Masking:
-- Create email masking function
CREATE OR REPLACE FUNCTION security.mask_email(email STRING)
RETURNS STRING
RETURN
 CASE
 -- Full access for authorized users
 WHEN is_member('pii_full_access') THEN email
 -- Partial mask for customer service
 WHEN is_member('customer_service') THEN
 CONCAT(
 LEFT(email, 3),
 '***@',
 SPLIT(email, '@')[1]
)
 -- Full mask for others
 ELSE '***@***.***'
 END;

-- Apply to column
ALTER TABLE production.customers.contacts
ALTER COLUMN email SET MASK security.mask_email;
Phone Number Masking:
CREATE OR REPLACE FUNCTION security.mask_phone(phone STRING)
RETURNS STRING
RETURN
 CASE
 WHEN is_member('pii_full_access') THEN phone
 WHEN is_member('customer_service') THEN
 CONCAT('XXX-XXX-', RIGHT(REGEXP_REPLACE(phone, '[^0-9]', ''), 4))
 ELSE 'XXX-XXX-XXXX'
 END;

ALTER TABLE production.customers.contacts
ALTER COLUMN phone SET MASK security.mask_phone;
Social Security Number Masking:
CREATE OR REPLACE FUNCTION security.mask_ssn(ssn STRING)
RETURNS STRING
RETURN
 CASE
 -- Only HR admins see full SSN
 WHEN is_member('hr_admins') THEN ssn
 -- Partial for tax processing
 WHEN is_member('tax_processing') THEN
 CONCAT('XXX-XX-', RIGHT(REGEXP_REPLACE(ssn, '[^0-9]', ''), 4))
 -- Full mask for everyone else
 ELSE 'XXX-XX-XXXX'
 END;

ALTER TABLE production.hr.employees
ALTER COLUMN ssn SET MASK security.mask_ssn;
4.3 Credit Card Masking
-- PCI-compliant credit card masking
CREATE OR REPLACE FUNCTION security.mask_credit_card(card_number STRING)
RETURNS STRING
RETURN
 CASE
 -- Fraud team sees full number
 WHEN is_member('fraud_investigators') THEN card_number
 -- Payment processors see last 4
 WHEN is_member('payment_processors') THEN
 CONCAT(
 'XXXX-XXXX-XXXX-',
 RIGHT(REGEXP_REPLACE(card_number, '[^0-9]', ''), 4)
)
 -- Everyone else sees fully masked
 ELSE 'XXXX-XXXX-XXXX-XXXX'
 END;

ALTER TABLE production.payments.transactions
ALTER COLUMN card_number SET MASK security.mask_credit_card;
4.4 Name and Address Masking
-- Name masking with initials
CREATE OR REPLACE FUNCTION security.mask_name(full_name STRING)
RETURNS STRING
RETURN
 CASE
 WHEN is_member('pii_full_access') THEN full_name
 WHEN is_member('analytics_team') THEN
 -- Show initials only
 CONCAT(
 LEFT(SPLIT(full_name, ' ')[0], 1), '. ',
 LEFT(COALESCE(SPLIT(full_name, ' ')[1], ''), 1), '.'
)
 ELSE 'REDACTED'
 END;

-- Address masking (city/state only)
CREATE OR REPLACE FUNCTION security.mask_address(full_address STRING)
RETURNS STRING
RETURN
 CASE
 WHEN is_member('pii_full_access') THEN full_address
 WHEN is_member('shipping_team') THEN
 -- Extract city, state (simplified example)
 REGEXP_EXTRACT(full_address, '([A-Za-z\\s]+,\\s*[A-Z]{2}\\s*\\d{5})', 1)
 ELSE 'REDACTED'
 END;
4.5 Numeric Data Masking
-- Salary masking with ranges
CREATE OR REPLACE FUNCTION security.mask_salary(salary DECIMAL(10,2))
RETURNS STRING
RETURN
 CASE
 WHEN is_member('hr_compensation') THEN CAST(salary AS STRING)
 WHEN is_member('managers') THEN
 CASE
 WHEN salary < 50000 THEN '$30K-$50K'
 WHEN salary < 75000 THEN '$50K-$75K'
 WHEN salary < 100000 THEN '$75K-$100K'
 WHEN salary < 150000 THEN '$100K-$150K'
 ELSE '$150K+'
 END
 ELSE 'RESTRICTED'
 END;

-- Age generalization
CREATE OR REPLACE FUNCTION security.generalize_age(age INT)
RETURNS STRING
RETURN
 CASE
 WHEN is_member('pii_full_access') THEN CAST(age AS STRING)
 ELSE
 CASE
 WHEN age < 18 THEN 'Under 18'
 WHEN age < 25 THEN '18-24'
 WHEN age < 35 THEN '25-34'
 WHEN age < 45 THEN '35-44'
 WHEN age < 55 THEN '45-54'
 WHEN age < 65 THEN '55-64'
 ELSE '65+'
 END
 END;
5. Tokenization Implementation
Tokenization replaces sensitive data with non-sensitive tokens while maintaining referential integrity.
5.1 Tokenization Architecture
┌───┐
│ TOKENIZATION FLOW │
├───┤
│ │
│ SOURCE DATA TOKEN VAULT │
│ ┌──────────────┐ ┌──────────────┐ │
│ │ John Smith │ ──Tokenize──▶ │ TOK_12345 │ ◀── Token stored │
│ │ 555-123-4567 │ │ TOK_67890 │ with mapping │
│ └──────────────┘ └──────────────┘ │
│ │ │ │
│ │ │ │
│ ▼ ▼ │
│ TOKENIZED TABLE TOKEN MAPPING TABLE │
│ ┌──────────────┐ ┌───────────────────────┐ │
│ │ TOK_12345 │ │ TOK_12345 │ John Smith│ (encrypted) │
│ │ TOK_67890 │ │ TOK_67890 │ 555-... │ │
│ └──────────────┘ └───────────────────────┘ │
│ │ │
│ │ Only authorized │
│ │ apps can detokenize │
│ ▼ │
│ DETOKENIZED VIEW │
│ (for authorized users) │
│ │
└───┘
5.2 Token Generation
-- Create token mapping table (encrypted, restricted access)
CREATE TABLE security.token_vault (
 token_id STRING NOT NULL,
 original_value STRING NOT NULL, -- Encrypted at rest
 data_type STRING NOT NULL,
 created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP(),
 expires_at TIMESTAMP
)
TBLPROPERTIES (
 'delta.columnMapping.mode' = 'name',
 'classification.level' = 'secret'
);

-- Tokenization function
CREATE OR REPLACE FUNCTION security.tokenize(
 value STRING,
 data_type STRING
)
RETURNS STRING
LANGUAGE SQL
RETURN (
 SELECT COALESCE(
 -- Check if token already exists
 (SELECT token_id FROM security.token_vault
 WHERE original_value = value AND data_type = data_type),
 -- Generate new token if not exists
 CONCAT('TOK_', data_type, '_', UUID())
)
);

-- Detokenization function (restricted)
CREATE OR REPLACE FUNCTION security.detokenize(token STRING)
RETURNS STRING
RETURN
 CASE
 WHEN is_member('token_detokenize_access') THEN
 (SELECT original_value FROM security.token_vault WHERE token_id = token)
 ELSE token -- Return token if not authorized
 END;
5.3 Tokenization in ETL
Tokenize sensitive columns during ETL
from pyspark.sql.functions import udf, col
from pyspark.sql.types import StringType

@udf(returnType=StringType())
def tokenize_value(value, data_type):
 """UDF to tokenize values"""
 if value is None:
 return None

 # Generate deterministic token using hash
 import hashlib
 token = f"TOK_{data_type}_{hashlib.sha256(str(value).encode()).hexdigest()[:16]}"

 # Store mapping (in production, use secure vault)
 spark.sql(f"""
 MERGE INTO security.token_vault t
 USING (SELECT '{token}' as token_id, '{value}' as original_value, '{data_type}' as data_type) s
 ON t.token_id = s.token_id
 WHEN NOT MATCHED THEN INSERT *
 """)

 return token

Apply tokenization
df_tokenized = df.withColumn(
 "ssn_token",
 tokenize_value(col("ssn"), lit("SSN"))
).withColumn(
 "email_token",
 tokenize_value(col("email"), lit("EMAIL"))
).drop("ssn", "email")

df_tokenized.write.mode("overwrite").saveAsTable("production.secure.customers_tokenized")
6. Data Masking for Test Environments
Production data often needs to be copied to test environments with sensitive data masked.
6.1 Static Data Masking Pipeline
Static masking for test environment population
from pyspark.sql.functions import *
import hashlib

def mask_for_test_environment(source_table, target_table):
 """Create masked copy of table for testing"""

 df = spark.table(source_table)

 # Define masking transformations
 masked_df = df \
 .withColumn("email",
 concat(
 substring(col("email"), 1, 3),
 lit("***@test.com")
)) \
 .withColumn("phone",
 lit("555-000-0000")) \
 .withColumn("ssn",
 lit("000-00-0000")) \
 .withColumn("first_name",
 concat(lit("Test_"), monotonically_increasing_id())) \
 .withColumn("last_name",
 lit("User")) \
 .withColumn("address",
 lit("123 Test Street, Test City, TS 00000")) \
 .withColumn("credit_card",
 lit("4111111111111111")) # Test card number

 # Write to test catalog
 masked_df.write \
 .mode("overwrite") \
 .option("overwriteSchema", "true") \
 .saveAsTable(target_table)

 return masked_df.count()

Execute masking
rows_masked = mask_for_test_environment(
 "production.customers.contacts",
 "development.customers.contacts"
)
print(f"Masked {rows_masked} rows")
6.2 Referential Integrity Preservation
When masking, maintain referential integrity across tables:
def mask_with_referential_integrity(spark):
 """Mask customer data while preserving joins"""

 # Create consistent customer ID mapping
 customer_mapping = spark.sql("""
 SELECT
 customer_id as original_id,
 CONCAT('CUST_', ROW_NUMBER() OVER (ORDER BY customer_id)) as masked_id
 FROM production.customers.master
 """)
 customer_mapping.createOrReplaceTempView("customer_map")

 # Mask customers table
 spark.sql("""
 CREATE OR REPLACE TABLE development.customers.master AS
 SELECT
 m.masked_id as customer_id,
 CONCAT('Test_', m.masked_id) as name,
 CONCAT(m.masked_id, '@test.com') as email,
 '555-000-0000' as phone
 FROM production.customers.master c
 JOIN customer_map m ON c.customer_id = m.original_id
 """)

 # Mask orders table with same customer mapping
 spark.sql("""
 CREATE OR REPLACE TABLE development.orders.history AS
 SELECT
 o.order_id,
 m.masked_id as customer_id, -- Consistent mapping
 o.order_date,
 o.amount
 FROM production.orders.history o
 JOIN customer_map m ON o.customer_id = m.original_id
 """)
7. Classification and Masking Governance
7.1 Classification Review Process
-- Tables pending classification review
SELECT
 table_catalog,
 table_schema,
 table_name,
 created,
 comment
FROM system.information_schema.tables t
WHERE NOT EXISTS (
 SELECT 1 FROM system.information_schema.table_tags
 WHERE table_catalog = t.table_catalog
 AND table_schema = t.table_schema
 AND table_name = t.table_name
 AND tag_name = 'sensitivity'
)
AND table_catalog = 'production';

-- Classification coverage report
SELECT
 t.tag_value as sensitivity_level,
 COUNT(*) as table_count
FROM system.information_schema.tables tbl
LEFT JOIN system.information_schema.table_tags t
 ON tbl.table_catalog = t.table_catalog
 AND tbl.table_schema = t.table_schema
 AND tbl.table_name = t.table_name
 AND t.tag_name = 'sensitivity'
WHERE tbl.table_catalog = 'production'
GROUP BY t.tag_value
ORDER BY table_count DESC;
7.2 Mask Function Audit
-- All masking functions in use
SELECT
 table_catalog,
 table_schema,
 table_name,
 column_name,
 mask_function_catalog,
 mask_function_schema,
 mask_function_name
FROM system.information_schema.column_masks
ORDER BY table_catalog, table_schema, table_name;

-- Columns with sensitive classification but no mask
SELECT
 ct.table_catalog,
 ct.table_schema,
 ct.table_name,
 ct.column_name,
 ct.tag_value as sensitivity
FROM system.information_schema.column_tags ct
LEFT JOIN system.information_schema.column_masks cm
 ON ct.table_catalog = cm.table_catalog
 AND ct.table_schema = cm.table_schema
 AND ct.table_name = cm.table_name
 AND ct.column_name = cm.column_name
WHERE ct.tag_name = 'sensitivity'
 AND ct.tag_value IN ('restricted', 'confidential')
 AND cm.mask_function_name IS NULL;
7.3 Masking Effectiveness Testing
-- Test masking as different user roles
-- Run as analyst (should see masked data)
SELECT
 customer_id,
 email, -- Should be masked
 phone -- Should be masked
FROM production.customers.contacts
LIMIT 5;

-- Verify masking with system tables
SELECT
 current_user() as test_user,
 is_member('pii_full_access') as has_pii_access,
 (SELECT email FROM production.customers.contacts LIMIT 1) as email_sample
8. Best Practices
8.1 Classification Best Practices
	Practice
	Recommendation

	Default Conservative
	Unclassified data should default to restricted

	Regular Reviews
	Quarterly classification accuracy reviews

	Automation
	Implement automated sensitive data discovery

	Documentation
	Document classification criteria and decisions

	Training
	Train data owners on classification procedures

8.2 Masking Best Practices
	Practice
	Recommendation

	Least Privilege
	Default to most restrictive mask

	Consistency
	Use standard masking functions across tables

	Testing
	Test masks with multiple user contexts

	Performance
	Optimize mask functions for query performance

	Audit
	Log when masked data is accessed

8.3 Operational Guidelines
-- Standard mask function template
CREATE OR REPLACE FUNCTION security.mask_TEMPLATE(value_param DATA_TYPE)
RETURNS RETURN_TYPE
COMMENT 'Standard mask for [DATA_TYPE]. Access levels: full_access, partial, none'
RETURN
 CASE
 -- Tier 1: Full access
 WHEN is_member('tier1_access_group') THEN value_param
 -- Tier 2: Partial access
 WHEN is_member('tier2_access_group') THEN /* partial transformation */
 -- Default: No access
 ELSE /* full mask */
 END;

-- Document all mask functions
COMMENT ON FUNCTION security.mask_email IS
'Masks email addresses. Full access: pii_full_access. Partial: customer_service (shows domain). Default: fully masked.';
9. Troubleshooting
9.1 Mask Not Applied
-- Verify mask is set
DESCRIBE TABLE EXTENDED production.customers.contacts;
-- Look for "Column Masks" section

-- Check mask function exists
SHOW FUNCTIONS IN security LIKE 'mask_%';

-- Test mask function directly
SELECT security.mask_email('test@example.com');
9.2 Unexpected Mask Behavior
-- Debug user context
SELECT
 current_user() as user,
 is_member('pii_full_access') as pii_access,
 is_member('customer_service') as cs_access;

-- Test mask with explicit context
SELECT
 security.mask_email('test@example.com') as masked_result;
9.3 Performance Issues
-- Mask function should be deterministic and fast
-- Avoid: External lookups in mask functions
-- Avoid: Complex regex operations

-- Good: Simple CASE statements
CREATE OR REPLACE FUNCTION security.mask_simple(value STRING)
RETURNS STRING
RETURN IF(is_member('authorized'), value, 'MASKED');
Document Control
	Field
	Value

	Version
	1.0

	Created
	2025-01-29

	Last Updated
	2025-01-29

	Next Review
	2025-04-29

	Author
	Data Platform Team

image1.png
#MAST=CH
DIGITAL

